Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300236, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991268

RESUMO

Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs' energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.

2.
Heliyon ; 9(6): e17350, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441386

RESUMO

The recent trends of vitrimer studies enhance the thermoset material with superior properties, therefore, it is particularly important to address the critical scientific inquiries in this area using their research metrics. The reported vitrimer systems have been highly required for future real-time applications; however, the inquisitiveness of material exchange mechanisms extends the research studies further. Significantly, more scientific information's are required to achieve the evident prospective outcomes via these materials. This article highlights the trends and developments of the most relevant publications, authors, articles, countries, and keywords in the vitrimer research field over the past 10 years. The represented bibliometric survey would elevate the basic understanding of the current vitrimer research stats and also help follow the particular research community to learn and develop insight. To generate bibliometric networks, bibliometric data has obtained from Scopus and visualised in VOS-viewer; as an overview of that, the highest number of publications were from China, United States, France, United Kingdom, and Spain.

3.
RSC Adv ; 13(6): 3910-3941, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36756545

RESUMO

Sustainable development is a critical concern in this fast-paced technological world. Therefore, it is essential to employ renewable resources to move towards sustainable development goals (SDGs). The polyols attained from renewable resources, including lignin, chitosan, vegetable oils, cellulose, etc. and the polymers derived from them have attracted the attention of the majority of researchers, both in academia and industry. The development of bio-based polymers from vegetable oils start emerging with different properties to generate a value-added system. This review will give an impression to readers about how coatings generated from vegetable oils can find a way towards better protective properties against corrosion either by using fillers or by using molecular structure modifications in the system, thus covering a range of vegetable oil-based self-healing polymers and their application in anti-corrosion coatings.

4.
Curr Drug Deliv ; 20(7): 943-950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35611774

RESUMO

BACKGROUND: The combinatorial use of anticancer drugs, dual or multiple, with a specific nanocarrier is one of the most promising attempts in drug delivery. The current work reports potassium contained graphene oxide (K-GO) as a nanocarrier in the drug delivery system of two anticancer drugs, gefitinib (GEF) and camptothecin (CPT), simultaneously. METHODS: To characterize K-GO, K-GO-related single and combined drug systems, different techniques have been performed and studied using the following spectroscopic tools, such as Thermo Gravimetric Analysis (TGA 4000), UV-visible spectroscopy, Raman spectroscopy, and Transmission electron microscopy (TEM). The in vitro cytotoxicity tests of K-GO, single drug system, and the combined drug system were also performed in the human breast cancer MDA-MB-231 cells. RESULTS: The release profile of the dual drug conjugates grafted onto the surface of K-GO was found to be up to 38% in PBS solution over 72 hours. The percentage of MDA-MB-231 cell viability was about 18% when treated with K-GO-GEF-CPT combined system; for K-GO, K-GO-GEF, and K-GO-CPT, the cell viability was 79%, 31%, and 32%, respectively. CONCLUSION: We studied the loading, release, and delivery of two anticancer drugs onto the fluorescent nanocarrier. Features, such as superb aqueous solubility, excellent biocompatibility, richness in potassium, and fluorescent nature, which can monitor the delivery of drugs, make them a promising nanocarrier for single or multiple drug delivery. Furthermore, our novel findings revealed that the loading capacity and cytotoxicity of the combined drug-loaded system are superior to the capacity of the individual drug system for human breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Grafite , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Gefitinibe , Portadores de Fármacos/química
5.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559744

RESUMO

As an energy-efficient additive manufacturing process, vat photopolymerization 3D-printing has become a convenient technology to fabricate functional devices with high resolution and freedom in design. However, due to their permanently crosslinked network structure, photopolymers are not easily reprocessed or repaired. To improve the environmental footprint of 3D-printed objects, herein, we combine the dynamic nature of hydroxyl ester links, undergoing a catalyzed transesterification at elevated temperature, with an acrylate monomer derived from renewable resources. As a sustainable building block, we synthesized an acrylated linseed oil and mixed it with selected thiol crosslinkers. By careful selection of the transesterification catalyst, we obtained dynamic thiol-acrylate resins with a high cure rate and decent storage stability, which enabled the digital light processing (DLP) 3D-printing of objects with a structure size of 550 µm. Owing to their dynamic covalent bonds, the thiol-acrylate networks were able to relax 63% of their initial stress within 22 min at 180 °C and showed enhanced toughness after thermal annealing. We exploited the thermo-activated reflow of the dynamic networks to heal and re-shape the 3D-printed objects. The dynamic thiol-acrylate photopolymers also demonstrated promising healing, shape memory, and re-shaping properties, thus offering great potential for various industrial fields such as soft robotics and electronics.

6.
Soft Matter ; 19(1): 98-105, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472188

RESUMO

N-doped graphene stabilized Cu(I)-catalyzed self-healing nanocomposites are developed. This study found the use of N-doped graphene as both a nanostructured material for enhancing mechanical and conductive properties and a catalyst promoter (a scaffold for catalytic copper(I) particles), helpful to trigger self-healing via "click chemistry". Due to an increase in electron density on nitrogen atom doping, including the coordination of N-doped rGO with Cu+ ions, nitrogen-doped graphene-supported copper particles demonstrate a higher reaction yield at room temperature without adding any external ligand/base. In this study, only one component (an azide moiety containing a healing agent) was encapsulated, whereas another component (an alkyne moiety containing a healing agent) was as such (without encapsulation) homogeneously dispersed in a matrix. Triggered capsule rupture then induces the contact of the healing agents with the N-doped graphene-based catalyst and the alkyne molecules dispersed in the matrix, inducing a "click"-reaction, allowing onsite damage to be repaired as determined by mechanical measurements entirely. Tensile measurements were also performed using molecular dynamics (MD) simulations to support the findings. Given the enormous importance of autonomic repair of materials damage, this concept here reports a trustworthy and reliable chemical system with a high level of robustness.

7.
RSC Adv ; 12(50): 32569-32582, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425695

RESUMO

To achieve sustainable development goals, approaches towards the preparation of recyclable and healable polymeric materials is highly attractive. Self-healing polymers and thermosets based on bond-exchangeable dynamic covalent bonds, so called "vitrimers" could be a great effort in this direction. In order to match the industrial importance, enhancement of mechanical strength without sacrificing the bond exchange capability is a challenging issue, however, such concerns can be overcome through the developments of fiber-reinforced vitrimer composites. This article covers the outstanding features of fiber-reinforced vitrimer composites, including their reprocessing, recycling and self-healing properties, together with practical applications and future perspectives of this unique class of materials.

8.
Polymers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297916

RESUMO

The aim to achieve sustainable development goals (SDG) and cut CO2-emission is forcing researchers to develop bio-based materials over conventional polymers. Since most of the established bio-based polymeric materials demonstrate prominent sustainability, however, performance, cost, and durability limit their utilization in real-time applications. Additionally, a sustainable circular bioeconomy (CE) ensures SDGs deliver material production, where it ceases the linear approach from production to waste. Simultaneously, sustainable circular bio-economy promoted materials should exhibit the prominent properties to involve and substitute conventional materials. These interceptions can be resolved through state-of-the-art bio-vitrimeric materials that display durability/mechanical properties such as thermosets and processability/malleability such as thermoplastics. This article emphasizes the current need for vitrimers based on bio-derived chemicals; as well as to summarize the developed bio-based vitrimers (including reprocessing, recycling and self-healing properties) and their requirements for a sustainable circular economy in future prospects.

9.
Soft Matter ; 18(37): 7112-7122, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36082826

RESUMO

We report the effect of incorporating functionalized graphene oxide (terephthalic acid functionalized GO; GO-g-TPA) on the thermal and mechanical properties of Hytrel (HTL; a thermoplastic elastomeric polymer). Initially, the synthesis of GO-g-TPA was performed via chemical methods and subsequently characterized using various spectroscopic and imaging techniques. The melt mixing technique was executed in preparing the nanocomposites of HTL/GO and HTL/GO-g-TPA. An excellent GO dispersion was observed in the HTL polymeric matrix, which could be attributed to the significant effect of hydrogen bonding and π-π interaction between the HTL and GO-g-TPA. As a result of incorporating GO and GO-g-TPA into the HTL matrix, the overall mechanical and thermal properties of the nanocomposites were significantly improved. For the HTL/5 wt% GO-g-TPA nanocomposite, the tensile strength and storage modulus significantly increased by 61% and 224%, respectively. In addition, the melting temperature and crystalline temperature are increased by a notable 20 °C and 21 °C, respectively. Thus, the current study found that by improving the dispersion ability of the GO sheets, the properties of the HTL can be significantly enhanced and the prepared composite materials can be relevant for a wide range of applications including sports goods, hose jackets, wire and cable jackets, electronics, fluid power, sheeting belting seals, and footwear, etc.

10.
Soft Matter ; 18(20): 3981-3992, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35552585

RESUMO

Herein, we report a robust approach for the selective covalent functionalization of graphene oxide (GO) with 4-hydroxybenzoic acid (HBA) for developing polymeric nanocomposites based on liquid crystalline polymers (LCPs). The functionalization of GO with HBA was confirmed by Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) spectroscopy. The surface morphology of GO and functionalized GO (FGO) was studied using field emission scanning electron microscopy (FE-SEM). Furthermore, the interactions between FGO and LCPs have been investigated by FT-IR spectroscopy, whereas dispersion of GO and FGO in the LCP matrix was analyzed by FE-SEM. The better dispersion of FGO can be attributed to the hydrogen bonding and π-π stacking interactions between FGO and LCPs. Our results showed that even the addition of 5 wt% FGO in the LCP matrix significantly enhances the tensile strength and storage modulus of the pristine LCPs by 84% and 78% respectively. Compared to neat LCPs, FGO incorporated composites also demonstrate an improvement in the melting temperature (Tm) by 11 °C and glass transition temperature (Tg) by 12 °C. Furthermore, thermogravimetric analysis (TGA) was performed to evaluate the thermal stability of the composite. The 5 and 50% decomposition temperature for the LCP/FGO nanocomposites (containing 5 wt% FGO) increased by 75 °C and 107 °C respectively.

11.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458296

RESUMO

Carbon fiber-reinforced polymer (CFRP) composites are used in a variety of applications such as aircraft, automobiles, body armors, and the sports sector owing to their ultra-strong and lightweight characteristics. However, the incorporation of an untreated pristine carbon fiber surface leads to a weak interfacial interaction with the polymeric matrix, thus triggering catastrophic failure of the composite material. Graphene oxide, a 2D-macromolecule consisting of several polar functional groups such as hydroxyl, carboxyl, and carbonyl on the basal planes and edges, tends to increase the surface area and has thus been applied between the fiber and matrix, helping to improve CFRP properties. Herein, we condense different routes of functionalization of GO nanosheets and their incorporation onto a fiber surface or in a carbon fiber-reinforced epoxy matrix, helping to improve the interfacial adhesion between the fiber and matrix, and thus allowing effective stress transfer and energy absorption. The improvement of the interfacial adhesion between the fiber and carbon fiber-reinforced epoxy matrix is due to the peculiar structure of GO nanoparticles composed of polar groups, especially on the edges of the nanosheets, able to provide strong interaction with the hosting cured epoxy matrix, and the "core" part similar to the structure of CFs, and hence able to establish strong π-π interactions with the reinforcing CFs. The article also covers the effect of functionalized graphene oxide incorporation on the mechanical, thermal, electrical, and viscoelastic properties of composite materials reinforced with carbon fibers.

12.
RSC Adv ; 12(5): 2574-2588, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425302

RESUMO

In this work, polymer grafted magnetic graphene oxide (GO-PVP-Fe3O4) was successfully synthesized for efficient delivery of anticancer drug. Firstly, GO was functionalized with the hydrophilic and biocompatible polymer polyvinylpyrrolidone (PVP) and then grafted with magnetic nanoparticles (Fe3O4) through an easy and effective chemical co-precipitation method. Quercetin (QSR) as an anticancer drug was loaded onto the surface of GO-PVP-Fe3O4 via non-covalent interactions. The drug loading capacity was as high as 1.69 mg mg-1 and the synthesized magnetic nanocarrier shows pH-responsive controlled release of QSR. The cellular cytotoxicity of the synthesized nanocarrier with and without drugs was investigated in human breast cancer MDA MB 231 cells and their effects compared on non-tumorigenic epithelial HEK 293T cells. These results reveal that the drug loaded GO-PVP-Fe3O4 nanohybrid was found to be more toxic than the free drug towards MDA MB 231 cells and exhibits biocompatibility towards HEK 293T cells. Overall, a smart drug delivery system including polymer grafted magnetic graphene oxide as a pH-responsive potential nanocarrier could be beneficial for targeted drug delivery, controlled by an external magnetic field as an advancement in chemotherapy against cancer.

13.
Org Biomol Chem ; 19(48): 10601-10610, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34859806

RESUMO

A two-pot synthesis of 5-aza-indoles has been developed from aqueous succinaldehyde and N-aryl propargylic-imines. This overall protocol involves: (i) the metal-free [3 + 2] annulation of aqueous succinaldehyde and N-aryl propargylic-imines to access 2-alkynyl-pyrrole-3-aldehydes and (ii) Ag-catalyzed 6-endo-dig-cyclization to obtain substituted 5-aza-indoles in the second pot. The 5-aza-indoles showed engaging photophysical activities, and the practicality of this pot-economic gram-scale synthesis has been demonstrated.

14.
Polymers (Basel) ; 13(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926010

RESUMO

A big step forward for composite application in the sector of structural materials is given by the use of Multi-Wall Carbon Nanotubes (MWCNTs) functionalized with hydrogen bonding moieties, such as barbiturate and thymine, to activate self-healing mechanisms and integrate additional functionalities. These materials with multiple healing properties at the same damaged site, imparted by hydrogen bonds, will also have the potential to improve material reliability, extend the service life, reduce replacement costs, and improve product safety. This revolutionary approach is obtained by integrating the non-covalent interactions coupled with the conventional covalent approach used to cross-link the polymer. The objective of this work is to characterize rubber-toughened supramolecular self-healing epoxy formulations based on unfunctionalized and functionalized MWCNTs using Tunneling Atomic Force Microscopy (TUNA). This advanced technique clearly shows the effect produced by the hydrogen bonding moieties acting as reversible healing elements by their simultaneous donor and acceptor character, and covalently linked to MWCNTs to originate self-healing nanocomposites. In particular, TUNA proved to be very effective for the morphology study of both the unfunctionalized and functionalized carbon nanotube-based conductive networks, thus providing useful insights aimed at understanding the influence of the intrinsic nature of the nanocharge on the final properties of the multifunctional composites.

15.
J Microbiol Immunol Infect ; 53(3): 389-391, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253143

RESUMO

INDIA- As for reported in 360 COVID-19 cases (till March 22, 2020), seven people were died, and 23 people were treated successfully.1 This virus can easily affect who having respiratory problem and especially who all have been aged older than sixty. Most of the affected peoples had reached India from different part of the world, as like of carrier. Owing to this, India made several precautionary measures to mitigate/neglect the disease in beginning stage, however, the denser population of country will not be simple to control the same for long time (community spread), if government will not incorporate the visionary strategies. Since attacked several nations have been worried mostly for their people life (health), despite that developing country like India with huge population should consider about the livelihood (for Below Poverty Line (BPL) people), equally with the life. This article will give insights to make effective strategy to culminate the world threat COVID-19 in India.


Assuntos
Infecções por Coronavirus/prevenção & controle , Controle de Infecções/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Países em Desenvolvimento , Humanos , Índia , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , SARS-CoV-2
16.
Nanoscale Adv ; 2(7): 2726-2730, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132387

RESUMO

Vitrimers, a class of polymeric networks that change their topology above a threshold temperature, have been investigated in recent years. In order to further extend their properties, in this research, we demonstrate disulfide exchange assisted polydimethylsiloxane (PDMS)- and graphene oxide (GO)-involved epoxy vitrimers, which exhibit a reduction in glass transition temperature and storage modulus with increase in flexural strain and low-temperature self-healing. Stress relaxation and Arrhenius study were carried out for the analysis of vitrimeric behavior, where the prepared epoxy material displays self-healing at 80 °C for 5 min, whereas a low-temperature self-healing (60 °C) was observed for epoxy/PDMS/GO nanocomposites.

17.
Macromol Rapid Commun ; 41(1): e1900359, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31631449

RESUMO

The copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) has emerged as the most useful "click" chemistry. Polymer science has profited enormously from CuAAC by its simplicity, ease, scope, applicability and efficiency. Basic principles of the CuAAC are reviewed with a focus on homogeneous and heterogeneous catalysts, ligands, anchimeric assistance, and basic chemical principles. Recent developments of ligand design and acceleration are discussed.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Carbono/química , Catálise , Reação de Cicloadição , Ligantes , Nitrogênio/química , Fósforo/química , Polímeros/química
18.
Mater Sci Eng C Mater Biol Appl ; 104: 109970, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500004

RESUMO

2D carbon nanomaterials such as graphene and its oxide counterpart have sought good research attention for their application as well as fundamental interest. Especially the versatility of graphene oxide establishes its elite candidature in every field because of diverse application potential. Here we are reporting a greener, eco-friendly and cost effective one step hydrothermal route for the synthesis of potassium doped graphene oxide (K-doped GO) from agricultural waste i.e. Quercus ilex Fruit. The elemental analysis and XPS study showed the high percentage (6.81%) of natural doping of potassium. The K-doped GO is specific and demonstrates bright blue photoluminescence (PL) under UV-light (λex = 365 nm). Low toxicity, intracellular localization, good biocompatibility and strong PL properties of the synthesized K-doped GOs portray it as an excellent bio-imaging agent holding great promise in analytical and biological fields.


Assuntos
Grafite/química , Potássio/química , Agricultura/métodos , Materiais Biocompatíveis/química , Carbono/química , Cor , Química Verde/métodos , Raios Ultravioleta
19.
Chem Commun (Camb) ; 55(44): 6249-6252, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086878

RESUMO

Nitrogen-doped reduced graphene oxide (NRGO) stabilized copper nanoparticles are designed to assist Cu(i)-catalyzed Huisgen [3+2] cycloaddition "click" chemistry (CuAAC). This study demonstrates a robust route for the synthesis of vastly dispersed heterogeneous catalysts (NRGO/Cu2O), achieving CuAAC at low temperature without any external additive (oxidizing/reducing agent) with high stability and recyclability. Underlying mechanisms are analysed using DFT calculations, confirming the experimental results.

20.
Polymers (Basel) ; 11(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108923

RESUMO

Reversible Hydrogen Bonds (RHB) have been explored to confer self-healing function to multifunctional nanocomposites. This study has been carried out through a sequence of different steps. Hydrogen bonding moieties, with the intrinsic ability to simultaneously perform the functions of both hydrogen donors and acceptors, have been covalently attached to the walls of carbon nanotubes. The epoxy matrix has been modified to adapt the formulation for hosting self-healing mechanisms. It has been toughened with different percentages of rubber phase covalently linked to the epoxy precursor. The most performant matrix, from the mechanical point of view, has been chosen for the incorporation of MWCNTs. Self-healing performance and electrical conductivities have been studied. The comparison of data related to the properties of nanocomposites containing incorporated functionalized and nonfunctionalized MWCNTs has been performed. The values of the electrical conductivity of the self-healing nanocomposites, containing 2.0% by weight of functionalized multiwalled carbon nanotubes (MWCNTs), range between 6.76 × 10-3 S/m and 3.77 × 10-2 S/m, depending on the nature of the functional group. Curing degrees, glass transition temperatures, and storage moduli of the formulated multifunctional nanocomposites prove their potential for application as functional structural materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...